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Random walk of a particle in a time-dependent environment

Consider the diffusion of a particle (a tracer) at a position y(τ) convected by a
centered Gaussian random field η(y , τ) which is white noise in space and time
and by χ(τ) which is a standard white noise in time.

The diffusion of the tracer is naturally described by a Langevin equation

dy(τ)

dt
=
√
2η(y(τ), τ) + χ(τ)

The noise χ(τ) is also interpreted as a common random environment if there
are multiple tracers: this will induce non-trivial correlations.
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Random walk of a particle in a time-dependent environment

For a given realisation realisation of the noise η, we can study the probability
density function of finding the particle at a given position

qη(y , τ) = 〈δ(y(τ)− y)〉χ
where 〈·〉χ denotes an averaging with respect to the background noise. The
Fokker-Planck equation associated to the original diffusion yields

∂τqη(y , τ) = ∂2y qη(y , τ)− ∂y (
√
2η(y , τ)qη(y , τ)) .

The average behavior of the density is rather dull and qη yields the standard
diffusion so that the standard deviation of the tracer’s displacement is y ∼

√
τ .

What about the sample-to-sample fluctuations of the density ?
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What happens for diffusions in atypical directions ?

Studying the system in an atypical direction

y = vτ or, y ∼ τα, α ∈ (1/2, 1]

is equivalent to inducing an asymmetry which changes the universality class of
a system (e.g. SSEP to ASEP, Gaussian to KPZ...).

This problem is called the extremal diffusion. It allows to study diffusion
beyond Einstein’s Gaussian predictions and probe the cross-over between
different universality classes.

Some precedent works done by
I Barraquand, Corwin (1503.04117)
I Thierry, Le Doussal (1705.05159)
I Barraquand, Rychnovsky (1905.10280)
I Barraquand, Le Doussal (1912.11085)
I Hass, Carroll-Godfrey, Corwin, Corwin (2205.02265)
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Diffusive systems and the Macroscopic Fluctuation Theory

The diffusion in time-dependent random medium is part of a large class of
model that can be studied in the framework of the Macroscopic Fluctuation
Theory. This theory describes the hydrodynamic limit of numerous discrete
models:

I Simple exclusion process
I Zero range process
I Random average process
I Kipnis-Marchioro-Presutti
I Hard Brownian particles
I Hard rod gas
I Double exclusion process

Figure: KMP model: neighbouring sites
randomly redistribute energies at random
times. taken from arXiv:2207.07549

The hydrodynamics are described by two transport coefficients (diffusion and
mobility)

∂tq = ∂y [D(q)∂yq −
√
σ(q)η(y , t)]

Examples
SSEP: D = 1, σ(q) = 2q(1− q), KMP: D = 1, σ(q) = 2q2.
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Diffusive systems and the Macroscopic Fluctuation Theory

Consider a particle starting from the origin y(τ = 0) = 0 and study the
statistics of the probability Z(Y ,T ) that at time τ = T it is found to the right
of y = Y

Z(Y ,T ) = P(y(T ) > Y |y(0) = 0) =

∫ +∞

Y

dy qη(y ,T )

with qη(y , 0) = δ(y). The MFT allows to describe the large deviations of the
density and current in the diffusive scaling

Y = ξ
√
T , T � 1, ξ = O(1)

where ξ is the asymmetry parameter. The following Large Deviation Principle
for the probability density of Z(Y ,T ) is then predicted at large time T � 1

P(Z) ∼ exp
(
−
√
T Φ̂(Z)

)
Our aim ? Calculate Φ̂(Z)

When ξ grows, the limit of the MFT is attained and we enter the early regime
of the KPZ fluctuations.
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Some history and context

Why studying the large deviations ?
The large deviations of a diffusion model correspond to an excess or deficit
of particles at some location in space. Let’s take the example of an anode
in a battery where electrons are detached to induce a current in a one-
dimensional flows. If the anode is sufficiently big, disparate regions will see
roughly independent flow. The maximal flow of the entire battery will be
determined by the one-point tail behaviour. Since the current determines the
battery performance, large deviations will dictate failure rates and lifetime.

Long history of works within the MFT

I Bertini, De Sole, Gabrielli, Jona-Lasinio, Landim
I Derrida, Gershenfeld, Bodineau
I Meerson, Krapivsky, Smith, Bettelheim
I Grabsch, Poncet, Rizkallah, Illien, Bénichou
I Mallick, Moriya, Sasamoto
I Spohn
I Krajenbrink, Le Doussal
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Some history and context

Solutions of the MFT have been found historically through a variety of
methods
I Stochastic integrability,
I Quantum integrability,
I Perturbation theory,
I Recursion of hierarchical equations for correlation functions.

These methods are often convoluted or ad-hoc and provide either limited
solutions or solutions for very particular instances. Hence, a standard, versatile
and simple method is still lacking.

We have developed a method based on classical integrability for the large
deviations of the KPZ equations which also applies to the diffusion in
time-dependent random medium.

Inverse scattering of the Zakharov-Shabat system solves the weak noise the-
ory of the Kardar-Parisi-Zhang equation
arXiv:2103.17215 & Phys. Rev. Lett. 127, 064101.
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Outline

1. The Martin-Siggia-Rose approach to the Macroscopic Fluctuation Theory:
the landmark of stochastic field theory

2. The direct and inverse scattering transforms: the landmark of classical
integrability

3. Completion of the large-deviation program

4. Matching with the large deviations of KPZ
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Probability distribution at large times

To obtain Φ̂(Z), one defines an intermediate Large Deviation Principle through
the following generating function

Eη
[

exp
(
−z
√
TZ
)]
∼ exp

(
−
√
TΨ(z)

)
=

∫
dZ P(Z) exp

(
−z
√
TZ
)

=

∫
dZ exp

(
−
√
T [zZ + Φ̂(Z)]

)
The large deviation function Φ(H) can be determined by a Legendre transform.

Result (Large deviation problem)
For T � 1,

Ψ(z) = min
Z∈[0,1]

[Φ̂(Z) + zZ ]

The rate function Ψ(z) controls all the cumulants of Z(Y ,T ).
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Martin-Siggia-Rose formalism I

Starting from the Fokker-Planck equation

∂τqη(y , τ) = ∂2y qη(y , τ)− ∂y (
√
2η(y , τ)qη(y , τ)) .

taking the diffusive scaling y = x
√
T , τ = tT , and

√
Tqη(y , τ) = Qη̃(x , t) so

that

∂tQη̃ = ∂2xQη̃(x , t)− T−1/4∂x(
√
2η̃(x , t)Qη̃(x , t))

where Z(Y ,T ) =
∫ +∞
ξ

dx Qη̃(x , 1). Now t ∈ [0, 1] and if T � 1, the new
standard white noise has a small magnitude: it is a weak noise.

We now write the generating function

Eη̃
[

exp
(
−z
√
TZ
)]

where the expectation is taken with respect to the white noise

Dη̃ exp
(
− 1

2

∫∫
xt

dxdt η̃(x , t)2
)
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Martin-Siggia-Rose formalism II

After the introduction of a response field P̃
√
T , one then integrates over the

noise η̃ and

Result (MSR large deviation action)
overall the MSR action at long time reads

Eη̃
[

exp
(
−z
√
TZ
)]

=

∫∫
DQ̃DP̃e−

√
T (S[P̃,Q̃]+z

∫ 1
0 dtδ(t−1)

∫ +∞
ξ

dxQ̃(x,t))

with

S [P̃, Q̃] =

∫ 1

0
dt
∫
R

dx [P̃(∂t − ∂2x )Q̃ − Q̃2(∂x P̃)2]

This action is amenable to a saddle-point evaluation!
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Hydrodynamic description

The optimal height and noise verify the non-linear hydrodynamic system

∂tQ̃ = ∂2x Q̃ − 2∂x(Q̃2(∂x P̃))

−∂t P̃ = ∂2x P̃ + 2Q̃(∂x P̃)2

Define the derivative of the response field

R̃(x , t) = ∂x P̃(x , t)

Then it is transformed into the {R,Q} system

∂tQ̃ = ∂2x Q̃ − 2∂x(Q̃2R̃)

−∂t R̃ = ∂2x R̃ + 2∂x(Q̃R̃2)

with the boundary conditions

Q̃(x , t = 0) = δ(x) , R̃(x , t = 1) = −zδ(x − ξ)

Main takeway I
This system is the derivative nonlinear Schrodinger equation. It can be

solved explicitly without approximation.
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Intermediate summary of the large deviation problem

We finally apply a Galilean boost

Q(x , t) = Q̃(x + ξt, t)e
1
2 xξ+ ξ2

4 t , R(x , t) = R̃(x + ξt, t)e−
1
2 xξ− ξ2

4 t ,

with the interpolating system

∂tQ = ∂2xQ − 2∂x(Q2R) + ξQ2R

−∂tR = ∂2xR + 2∂x(QR2) + ξQR2

with initial / boundary conditions

Q(x , 0) = δ(x)︸ ︷︷ ︸
initial density

, R(x , 1) = −ze−
ξ2
4 δ(x)︸ ︷︷ ︸

derivative response field

, Z =

∫ +∞

ξ

dx Q̃η(x , 1)︸ ︷︷ ︸
value of the conditioned probability

.

MFT large deviation function
The large deviation function is

Ψ′(z) =

∫ +∞

ξ

dx Q̃(x , 1) =

∫ +∞

0
dx Q(x , 1)e−

1
2 xξ− ξ2

4

And now what ? The system is non-linear, not very friendly...
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That is where our heroes come to our rescue

Kaup, Newell, Wadati, Konno and Ichikawa tell us how to linearize the
problem.
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The interpolating system is classically integrable!

We have the existence of a Lax pair: define a 2-component vector ~v = (v1, v2)ᵀ

depending on (x , t, k) (space, time, Fourier) and the linear differential system

∂x~v = U1~v , U1 =

 − ik
2 −( ξ2 − ik)R(x , t)

Q(x , t) ik
2


and

∂t~v = U2~v

Result (Compatibility)
The compatibility equation is

∂xt~v = ∂tx~v or ∂tU1 − ∂xU2 + [U1,U2] = 0.

This is precisely the interpolating system.

The spatial equation is an extension of the Zakharov-Shabat system with
non-Hermitian potentials R,Q. The ZS system is the landmark of the AKNS
class of integrable non-linear problems (comprising KdV, mKdV, NLS...)
solvable using scattering theory.
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Definition of the scattering problem

Let ~v = ek
2t/2φ with φ = (φ1, φ2)ᵀ and ~v = e−k2t/2φ̄ be two independent

solutions of the linear problem such that

φ '
x→−∞

(
e−ikx/2

0

)
, φ̄ '

x→−∞

(
0

−e ikx/2

)

and

φ '
x→+∞

(
a(k, t)e−

ikx
2

b(k, t)e
ikx
2

)
, φ̄ '

x→+∞

(
b̃(k, t)e−

ikx
2

−ã(k, t)e
ikx
2

)

(a, ã, b, b̃) are called the scattering amplitudes.

The following ratios define the reflection coefficients

r(k, t) =
b(k, t)

a(k, t)
, r̃(k, t) =

b̃(k, t)

ã(k, t)
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Scattering transforms

{Q(x , t = 0),R(x , t = 1)} −→
direct

scattering
transform

{a(k, t), b(k, t)} −→
inverse
scattering
transform

{Q(x , t),R(x , t)}

Main takeway II
Both of the direct and inverse scattering transforms are done explicitly.

Our plan:

1. Time dependence: {a(k, t), b(k, t)}
2. Fourier dependence: {a(k, t), b(k, t)}
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DST - Time-dependence of the scattering coefficients

Plugging

φ '
x→+∞

(
a(k, t)e−

ikx
2

b(k, t)e
ikx
2

)
, φ̄ '

x→+∞

(
b̃(k, t)e−

ikx
2

−ã(k, t)e
ikx
2

)
into the time equation

∂t~v = U2~v

One finds that

Result (Time-dependence)
a(k, t) = a(k)

ã(k, t) = ã(k)

b(k, t) = b(k)e−k2t

b̃(k, t) = b̃(k)ek
2t

This is universal and independent of the potentials R,Q !

We also have the normalization aã + bb̃ = 1, this is universal.

Alexandre Krajenbrink Scattering of the derivative non-linear Schrodinger equation and diffusive systems 19/ 29



DST - Fourier-dependence of the scattering coefficients

One then solves the spatial part at t = 0 and t = 1

∂x~v = U1~v , U1 =

 − ik
2 −( ξ2 − ik)R(x , t)

Q(x , t) ik
2


Using

Q(x , 0) = δ(x), R(x , 1) = −ze−
ξ2
4 δ(x).

One finds that

Result (Fourier-dependence)

b(k) = 1

b̃(k) = −( ξ2 − ik)ze−k2− ξ2
4

ã(k) = 1 + ( ξ2 − ik)ze−
ξ2
4 Q+(k)

a(k) = 1 + ( ξ2 − ik)ze−
ξ2
4 Q−(k)

where we have defined the half-Fourier transforms

Q±(k) =

∫
R±

dx Q(x , 1)e−ikx

Alexandre Krajenbrink Scattering of the derivative non-linear Schrodinger equation and diffusive systems 20/ 29



Some intermediate results

From the normalization relation one obtains

a(k)ã(k) = 1− b(k)b̃(k) = 1 + (
ξ

2
− ik)ze−

ξ2
4 e−k2

which is solvable using scalar Riemann-Hilbert method in the complex plane.

We can deduce that the optimal density at final time Q(x , 1) has a
discontinuity around 0 due to shocks

(1− ze−
ξ2
4 Q(0+, 1))(1 + ze−

ξ2
4 Q(0−, 1)) = 1

The large deviation function can be read from the scattering amplitudes

Ψ′(z) = Q+(k = −i ξ
2

)e−
ξ2
4 = 1− Q−(k = −i ξ

2
)e−

ξ2
4
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What about the large deviation function ?

Eη̃
[

exp
(
−z
√
TZ
)]
∼ exp

(
−
√
TΨ(z)

)
with

Ψ(z) = −−
∫
R

dq
2π

Li2(z(iq − ξ
2 )e−q2− ξ2

4 )

(iq − ξ
2 )2

+ zΘ(−ξ)

where Θ is the Heaviside function with convention Θ(0) = 1/2 and Li2 is the
dilogarithm defined on some adequate Riemann sheet.

For ξ large, we observe that Φ̂(Z) is not convex but has a concave part!
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Leaving the MFT regime to approach the KPZ one

For ξ � 1, we should approach the KPZ regime. The mechanism is the
last remaining piece of the puzzle.
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Leaving the MFT regime to approach the KPZ one

We now consider the limit where the tracer particle is located extremely far, i.e.

ξ → +∞ and define the rescaled coupling z̃ = z ξ2 e
− ξ2

4 .

Ψ(z) ' −−
∫
R

dq
2π

Li2(−z ξ2 e
−q2− ξ2

4 )

( ξ2 )2
=

4
ξ2

ΨKPZ(z̃)

where
ΨKPZ(z̃) = − 1√

4π
Li5/2(−z̃)

Recall that at optimality Ψ′(z) = Z , defining H = logZ , we have
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Leaving the MFT regime to approach the KPZ one

Consider HKPZ = hKPZ(0,TKPZ) + log(
√
TKPZ) the solution to the KPZ

equation
∂thKPZ = ∂2x hKPZ + (∂xhKPZ)2 +

√
2η

with droplet initial condition evaluated at time TKPZ. It was proven for KPZ in
2015 that for TKPZ � 1 there is the following Large Deviation Principle

exp(− z̃√
TKPZ

eHKPZ) = exp

(
−ΨKPZ(z̃)√

TKPZ

)
This result matches exactly with the MFT result using the following
convergence for ξ � 1

TKPZ =
Y 4

16T 3 =
ξ4

16T
, Z(Y ,T ) ' Y

2T
e−

Y2
4T ehKPZ(0,TKPZ)

The two results match perfectly, showing that no intermediate regime exists
between the diffusive scaling Y ∼

√
T and the finite-time KPZ equation

scaling Y ∼ T 3/4
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Extension to discrete models

It is natural to investigate whether the MFT associated to the RWRE can be
related to a discrete random medium. We consider a discrete random walk in a
Beta distributed environment known to converge to the continuum RWRE

P(w) =
Γ(α + β)

Γ(α)Γ(β)
wα−1(1− w)β−1

Simulations using importance Monte Carlo sampling can be performed on
this model.
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Extension to discrete models

For a walk length T = 128 and various values of the asymmetry parameter ξ,

Z = P

(
X (T )√
T/2

> ξ

)

 0

 5

 10

 15

 20

 0  0.2  0.4  0.6  0.8  1

Φ
(Z

)

Z

T=128 ξ=0
ξ=1
ξ=2
ξ=3
ξ=4
ξ=5

analytics

It is argued that, up to a simple rescaling, this rate function of the discrete
model is identical to the one obtained exactly for the continuum version of
the model for large T .
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Extension to more general MFT

The framework introduced here is valid beyond the random walk in a
time-dependent environment or KMP model.
I There exists a derivative Cole-Hopf transform which brings all quadratic

MFT to the derivative NLS {R,Q} system.
I Quadratic MFT are dual to other MFT models using the mapping

[Rizkallah, Grabsch, Illien, Benichou, 2023]

D̃(q) =
D(1/q)

q2
, σ̃(q) = qσ(1/q)

I There exists a classical Jordan-Wigner gauge transformation [Wadati,
Sogo, 1982] which brings the derivative NLS {R,Q} system to the NLS
{P,Q} system which appears in the Weak Noise Theory of KPZ: this is
applicable to all above MFT.

The quenched initial conditions are more easily solved using DNLS while the
annealed ones are solved using the NLS system.
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Direct outlooks and other extensions

Exact solutions for the MFT have been obtained mainly by exploiting the
(quantum/stochastic) integrability of the dynamics. We have derived here
a nontrivial quantity directly from the underlying field theory, by exploiting
the classical integrability of the saddle point equations. This provides a new
tool on the Swiss knife to tackle the Macroscopic Fluctuation Theory. This
is also the first work on the fine crossover between the MFT and KPZ.

I Extension to multiple tracers
I Extension to more general initial conditions and models in the

Macroscopic Fluctuation Theory history in the making! work in progress...
I Exact solution for the DNLS system using Fredholm determinants history

in the making! work in progress...
I Are the KPZ fluctuations ubiquitous in the MFT with an asymmetry ?
I What if we quantize the Lax pairs ? history in the making! work in

progress...

Thank you very much for listening!
Any questions ?
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